If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8k^2-16k=16
We move all terms to the left:
8k^2-16k-(16)=0
a = 8; b = -16; c = -16;
Δ = b2-4ac
Δ = -162-4·8·(-16)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16\sqrt{3}}{2*8}=\frac{16-16\sqrt{3}}{16} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16\sqrt{3}}{2*8}=\frac{16+16\sqrt{3}}{16} $
| 9(y+-2)+4=31 | | 2+3x=2+4x | | -3(h-3)+9-3h=90 | | 9-4x=61 | | 4+11x=92 | | 9y=3(6.75)-1 | | M=8(m-1) | | 9+6k-9=-15+9 | | 3(f+10)+2f-20=100 | | -3(3-x)=4(2) | | -5-6m=-59 | | 21=4b-3 | | 21+n=2n-35 | | 6x+8=11x-2 | | 5y-12=4-2(-y+3) | | -7c+4=-9c-8 | | x^2+x-0.75=0 | | 11y-2=20 | | 17-x=1/3·15+6 | | 2/7t-1/6=-5/7t-13/6 | | 1/2x^2+2x-160=0 | | 2^6x6^3=48 | | x=11=85 | | 4x^{2}+24x+1=0 | | -2-4u=-18 | | 7.1v+5.4=1.7 | | x(x+7)+12=72 | | 4b+10=13b-80 | | 4(1+4x)-5x=92 | | 27=x/9+2 | | 5/10x=20 | | -e+2=0 |